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Anisotropic diffusion in nematic liquid crystals and in ferrofluids
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A unified, mean-field kinetic theory approach to the anisotropic translational diffusion observed in liquid
crystals and in ferrofluids is proposed. In the dilute regime, unified expressions for the parallel as well as for
the perpendicular diffusion coefficient in terms of orientational order parameters are found that apply for liquid
crystals as well as for ferrofluids. This result explains the common origin of the anisotropic diffusion found in
liquid crystals and in ferrofluids. Differences between the two liquids appear in the semi-dilute regime, where
the diffusion coefficients depend on the specific interaction potentials. Explicit expressions for the diffusion
coefficients are worked out also in this regime within a mean-field approximation. Comparisons with previous
theoretical and experimental results are performed, showing satisfactory agreement to the present results.
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I. INTRODUCTION macroscopic phenomena. In the case of nematic liquid crys-
) . ) o _tals, the kinetic model proposed independently by H&&%
Anisotropic translational diffusion has been observed inyng poi[13] is still widely used in order to describe various
experimental investigatior{d—3] and computer simulations gynamical and rheological properties of liquid crystals. In
[4,5] of nematic liquid crystals as well as in experiments oNerrofiuids, a similar role is played by the kinetic model pro-
ferrofluujs[ﬁj. In liquid crystgls, the anls.,otr'opy is de'scrlbed posed by Martsenyukt al. [14] and later on generalized by
by the direction of the nematic order while in ferrofluidsn Zubarevet al.[15]. In the present work, we propose a kinetic
denotes the direction of the magnetic field. It is observed irlheory approach building upon these models in order to ex-
both systems that the translational diffusion parallel o theyain and describe the common origin and the differences of
director is enhanced while the diffusion in the perpendiculaing anisotropic diffusion in liquid crystals and in ferrofluids.
direction is decreased when compared to the isotropic values. This paper is organized as follows. In Sec. Il the unified
While so far different models have been proposed in order tQjnetic model for the dynamics of liquid crystals and ferrof-
explain these phenomena separately, we here propose a Ujiq is introduced. For dilute systems of nonmagnetic par-
fied approach based on a kinetic model. This approach hag|es expressions for the diffusion coefficients are derived
the additional benefit that the kinetic models considered herg, sec. |11 The corresponding diffusion coefficients are
are also used in order to describe other dynamical and rheQyorked out for nematic liquid crystals in Sec. IV and for
logical properties. The predictions of the present approacksrofiuids in Sec. V. It is shown that in certain limiting
are compared with those of the modified affine transformagases; the diffusion coefficients reduce to those derived in

tion model for liquid crystal§5] and with the mean-field gec 1. Finally, some conclusions are offered in Sec. VI.
model proposed in Ref6] to describe the anisotropic diffu-

sion in ferrofluids found in their experiments.
Both kinds of fluids show additional anisotropic macro- II. KINETIC MODEL

scopic properties like anisotropic viscosities, for example The microstructure of both nematic liquid crystals and
[7]. A phenomenological so-called n"_nodified affine transfor-orofiuids can be described by a vectoron the three-
mation model has been proposed in order to account fofimensional unit sphere. In the case of nematic liquid crys-
anisotropic viscosities in liquid crystal$] This model is (515 y denotes the orientation of the liquid crystal molecules,
also' ab'le tc_) describe computer S|mU|atl0_n results Of. anisoyhile in the case of ferrofluida denotes the orientation of
tropic diffusion[5]. Results of recent experimental studies onge magnetic moment of the ferromagnetic colloidal par-
the anisotropic diffusion in a thermotropic liquid crystal are yjcjes. |n ferrofluids, two main relaxation mechanisms for the
well described by this modéL,2]. An earlier approach based magnetic moment are known. In the Brownian relaxation,
on the hydrodynamic theory of isotropic liquid9] was  he particle as a whole rotates, while in the Néel relaxation
found to be incompatible with the experimental results inihe magnetic moment rotates within the particle. Following
[1_,2]. _In the case of ferrofluids, the methc_)ds used to derivezef. [14], we here employ the so-called rigid dipole approxi-
diffusion coefficients[6,10,11 have not directly been ap- mation, i.e., we assume that the anisotropy constant of the
plied in order to predict also viscous behavior apd vice Versamagnetic material is sufficiently large that the moment re-
A complementary approach to the dynamics of anisomains parallel to the easy axes of the ferromagnetic particle.
tropic fluids by kinetic models has proven to be very usefuli, this case, the unit vectar characterizes also the orienta-
in order to provide a better microscopic understanding of thgjoy of the ferromagnetic particle. In order to investigate
translational diffusion, spatial inhomogeneities have to be
included into the description. Le{(r,u;t) denote the prob-
*Email address: ilg@physik.tu-berlin.de ability distribution function of finding a moleculéliquid
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crystal or ferromagnetic collojdwith orientationu at posi-
tion r at timet. The orientational distribution functiog(u ;t) U(r,u)=-u-h+Uuua, (4)

is recovered ag/(u;t)=[d%f(r,u;t), while the number den- where h=uH/kgT is the reduced magnetic field, is the
sity is computed by;(r;t):fdzuf(r.,u;t). The normalization  magnetic moment of the particle, and [d2uf(r,u;t)uu de-
is chosen agdrd?uf(r,u;)=N, with N being the number of a5 the second rank orientational order parameter tensor
particles. In the sequel, we assume particles of ellipsoida)th 5= (a+a’)/2-(1/3)1 the symmetric traceless part of
shap.e. Then, the translatjonal anq rotational dynamics undgke matrixa and 1 the unit matrix. For nematic liquid crys-
the influence of Brownian motion and the potentldl 515 the magnetic momeptis usually very small, so that the
=V/kgT can be described by the following Fokker-Planck firs; term in Eq.(4) may be neglected. For ferrofluids, on the
equation[16-18 contrary, due to the large magnetic moment of the ferromag-
netic particles, the magnetic field energy represented by the
first term in Eq.(4) is significant. Usually, the contribution of
the second term in Ed4) can be neglected compared with
the first term, at least for moderate concentrations. To lowest
order, magnetic dipolar interactions can be incorporated in a
mean-field description by replacing the magnetic fidldy
0 0 an effective field 22]. Thus, the second term in E@) may
Lyf=V -{Djuu+Di(1-uuw}-(VE+fVU)  (2)  pe neglected in the case of ferrofluids. Equatiobs(3)
have been proposed to describe the dynamics of nematic lig-
and uid crystals. Here, we propose that these equations with the
corresponding choice for the potentidl are also valid for
Liof =D, L - (Lf+fLU), (3) ferrofluids within the rigid dipole approximation. For a spa-
tially homogeneous situatior,, does not contribute to the

_ _ . dynamics. In this case, Eq$l)—(3) reduce to the kinetic
whereV=4/dr, L=uX d/ du denotes the rotational operator, model of nematic liquid crystals proposed in Ref52,13

Dy Is the rotational diffusion coefficient, arti, D} are the and to the kinetic model of ferrofluids introduced in Ref.

e Fof el 1415, respecively ere, satly hamogeneavs etrna
, €SP Y- P agnetic fields are considered. Due to Maxwell's relation

eliipsoidal particles, one h§§ﬁ>Di’ while the opposite ' ¢ 1, ¢ .M=0, the internal magnetic field becomes spa-
sign holds for oblate ellipsoidal particles. For moderate ax'%ially inhomogéneous only if the magnetization, due to con-

ratios, recent molecular dynamics simulation results indicat%entration gradients, becomes spatially inhomogeneous

thatD, andD, are proportional to the axis rati@ [19]. For S X
: - | AN For the case of nematic liquid crystals, E¢B—(4) with
rodlike particles with large axes rati@d=a/b>1, wherea h=0 have been used in Ré23] in order to study the influ-

grgdb denote the 5ﬁm|—axes, thg dlf;fu§|on cgeﬁl%%]i?;%d ence of the anisotropic diffusion coefficients on the Franck
L are we approximate Y PITeYL  glasticity coefficients.

=keT In(a/b)/2m 5, wherey; s the viscosity of the solvent "o 0) 14 he stressed that the kinetic model defined by

andkg gndT denote Boltzmann's constant and temperatureEqs.(1)—(3) neglects hydrodynamic interactions between the
rgspectwely[?]. For moder ate axes Fat!@’ “Se“‘." expres- particles. While hydrodynamic interactions are known to af-
slons have been den\{ed n RQZO] "‘Q‘h'”_tj}f affine "a”g‘“" fect dynamical properties, the model defined above has been
forrlwgtlon model W.h'Ch pred|ctsDL=_Q DSP _and Dy . of great help to study various dynamical properties of nem-
=Q""Dgp Whgre Dsp 1S the corresponding diffusion coeffi- ¢ liquid crystals and ferrofluid$3,7]. Therefore, the
cient of sphe_ncal partlcle_s. . .__present work can be useful to study the influence of orienta-

In ferrofluids, depending on details of the preparationyiyn,| order and interaction potentials on the diffusion, leav-
conditions, the ferromagnetic particles are either more or Ie:s-r?]g the effect of hydrodynamic interactions for future stud-
spherical(i) or show pronounced asphericity), e.g., due to
permanent clustering. In cag@), the present approach is
directly applicable. To deal with the first case, we follow
Refs.[15,21] and define effective ellipsoidal particles repre-
senting temporary or permanent aggregates due to dipolar 9 ) ]
interactions. In the latter case, we assume that the axis ratio Ep(r?t) :f du(Ly + L) f(r,ust) == V(r;t),  (5)
of the effective ellipsoidal particles varies only weakly with
the magnetic field. Then, the axis ratio is determined solelyith the diffusion flow
by the value of the dipolar interaction. Cag@sand (i) will
pe Iconsidered in more detail in Secs. VB and V A, respec- i(r,t) = _f dzu{Dfuu + D(j(l— uu)} - [VE(r,u:t)
tively.

The equilibrium distribution fy(r,u)=exp-U)/Z, Z
= [d°rd?u exp(-V), is the stationary solution to the kinetic
equation(1). In the sequel, we assume that the interactiorNote, that although the rotational operatgg does not con-
potential is of the form tribute to the diffusion flow, the coupling of translational and

Jd
Ef = (Ltr + Lrot)f! (1)

where the translational and rotational parts read

Integrating the kinetic equatiofl) over all orientations
we arrive at the continuity equation

+f(r,u;t) VU(r,u)]. (6)
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rotational motion appears ipvia the diffusion tenso«for
DY+ DY) and the interaction potential.

If we define the distribution functione(r,u;t) by
f(r,u;t)=p(r;t)e(r,u;t), the normalization [d’uf=p re-
quires [due=(1)=1. Then, the diffusion flow6) can be
written as

J(r;0 =000 + ;0 +V(r;t) (7
with
j°==D% V p~ (D}~ DI)(uu)-Vp, ®
the contribution from spatially inhomogeneous ordering
j=-(Dy-D1)pV<(uu), 9
and the contribution from the interaction potential

j=-D7p(VU) - (D} ~D)puu-VU).  (10)

PHYSICAL REVIEW E 71, 051407(2009

D,=D{-%(1-5)(DY-D?). (14)

Equations(13) and (14) are our main result in this section.
As will be shown later, these expressions hold not only for
dilute nematic liquid crystals but also for very dilute ferrof-
luids, if both are subjected to Brownian motion in a spatially
homogeneous potential. In the case of perfect orientational
order we haves,=1. In this case, we find from EqgL3) and

(14 D,=DY, D,=DY, i.e., the effective diffusion coefficients
reduce to their bare values. The average diffusion coefficient
is defined by

D=3(D,+2D,). (15)

In the present case, the average diffusion coefficient
D=%(D%+2D%)=D° (16)

is found to be constant, independent of the degree of orien-
tational order. In the presence of orientational ordering, the

Evaluation of the diffusion coefficients via the diffusion flow difference of the expression$3) and(14) reflects the aniso-
thus requires the calculation of the moments appearing itropy of the translational diffusion,

Egs. (8)—10).

The equilibrium distributiong, is uniaxially symmetric
with respect to the directar. Uniaxial distribution functions
can be represented by

Q.UM =X (2j + DS(r;HPy(u-n), (11
i=0

whereP;(x) denotes the Legendre polynomial of ordeand
are the orientational order parameters, —%/Z<1. For
liguid crystals, only even terms appear in Edl) due to

D, -D%=-3(D{-D%)S, 17

and

D,-D°=%(D{-DY)S,. (18)

In qualitative agreement with experimental results, the diffu-
sion perpendicular to the directaris decreased while it is
enhanced parallel to when compared to the isotropic value,
the anisotropy being more pronounced the stronger is the
orientational ordering.

Following Ref.[5], we define the ratio

their head-tail symmetry. For ferrofluids, this symmetry is
broken by the magnetic moments of the particles. Conse-
quently, all terms appear in Eq11). The implications of R
uniaxial symmetry on equilibrium and nonequilibrium prop-
erties of liquid crystals and ferrofluids have been consideredn order to characterize the anisotropy of diffusion. The value
e.g., in Refs[21,24,25. for the perfectly ordered liquid iR°=(D-D9)/(D2+2D9).

In the present case we find

R=RS,. (20)

A linear dependence dR on S, is confirmed by computer
For dilute systems, the interaction contribution to thesimulations of hard ellipsoid§5]. The result(16) for the
mean field potentiall, Eq. (4), can be neglected. Further- average diffusion coefficient is in disagreement with experi-
more, if we consider nonmagnetic particles, the contributionments[1] and simulation resultss]. This discrepancy is due

of the magnetic field to the potentitll also vanishes. There- g interactions between the particles as will be demonstrated
fore, no contribution of the interaction potential to the diffu- jn the next section.

sion flow appearg”=0. For a spatially homogeneous order-
ing with uniaxial symmetry, i.e.5(r)=S andn(r)=n are
independent of, alsoj® vanishes. Equatio(8) can be evalu-
ated to give

D,-D,
Dy+2D,

(19

Ill. DILUTE SUSPENSIONS OF ANISOTROPIC
COLLOIDAL PARTICLES

IV. DIFFUSION IN NEMATIC LIQUID CRYSTALS

The kinetic model of rotational dynamics of nonmagnetic,
elongated particles, Egél) and(3), was proposed indepen-
dently by Hes$12] and Doi[13]. These equations provide a
very useful model system for nematic liquid crystals that has
been studied extensive[,7]. The mean-field potentigh)
with h=0 is frequently chosen as the Maier-Saupe potential,
where the strength of the interactibh is proportional to the
local densityp [3,7]. Excluded volume interactions of rod-
like particles are more accurately described by the Onsager

j=j°=-D,(1-nn)-Vp-D;nn-Vp, (12)

where the effective diffusion coefficients are given by

1-5
D,=D% + T(Dﬁ’— DY) (13)

and
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potential[ 7]. Further manipulations with the Onsager poten- 20
tial are hindered by its complicated structure. However, sys-
tematic approximations have been suggestef28} which

lead to more tractable potentials. The lowest order approxi- 15[
mation to the Onsager potential is of the fot# with
U, = (1 - (3/2a:a) 2 (21) 2L
a

depending on the reduced excluded voluinand the orien-
tational order parametex. In the uniaxial regime, where Eq.
(11) applies,a=S,nn and the Onsager potential becomes 5r
U,=®(1-S)"2 For rodlike particles, the reduced excluded
volume is®=2b¢?p, where D and ¢ are the diameter and
length of the particles. The following results hold for arbi- 0 . L . L . L . L
trary potentials of the form,(p,a). Inserting Eq.(4) into ' s ’
(6) and performing the integration over the orientations, the

d'ﬁus'o,n flow qontalns §econd— and fourth-ord_er_moments.. FIG. 1. The average diffusion coefficiedtof hard ellipsoids as
Assuming agan a spa'ltla.llly.hqmogeneous unlaX|§1I Nemalig fynction of the orientational order parametsy. Circles and
order, the diffusion flow=j°+j" is of the form(12) with the squares are data from R¢§], corresponding to axis ratic®=10

effective diffusion coefficients andQ=5, respectively. The dashed lines are the predictions of the
_ 1-S, -~ affine transformation model; the solid line is the reg@4#) with
D, =D{(1+U;S) +(D?—D‘i>( 3 ulszzl) b=2.
(22 model, the average diffusion coefficient is predicted to be
and given by D=D%1+2BS)Y3(1-BS,))?3, where B=(Q?
-1)/(Q%+2). Although the functional form is different, the
D,=D° (1 +U 322) +(DO- D°)<l +25 +U Ss ) two expressions lead to similar results for highly elongated
L ! A W rezm ) ellipsoids, as demonstrated in Fig. 1.
(23) From Eqs(22) and(23), the ratioR, defined in Eq(19) is
5 given by
whereU;=3p(3U,/dp), 3, =(~7+255,-18S,)/105, and3, B
=(14+555,+36S,)/105. Some details of the derivation are R= RO1 +Uq (3 -2)) (25)
provided in Appendix A. For the Maier-Saupe potential and B 1+0 S% -
1

the potential21), the strength of the potentiél, is propor-

tional to the density. Thus, it follows thaty;=5Uy, which | e dilute limit, U; — 0, the result(19) is recovered from
depends on the density and, in the case of the potd@al 4 (25). For a quantitative comparison to experiments or
also on the alignment tensar _ simulation results, one has to supply the missing information
In the limit of vanishing interactions); —0, Egs.(22) 4, S,. Ehrentraut and Hess have estima®gS,[1—(1
and (23) coincide with Eqs(13) and (li)' From Egs.(22) -S,)”], with »=0.6 on the basis of an ansatz for the orienta-
and(23), the average diffusion constabtis computed as  tjonal distribution functior{8]. Figure 2 shows as a func-
—~ 0 ~ tion of S, with this ansatz forS, and a comparison to the
D=D%1+U;S)). (24) modified affine transformation model and simulation results

From Eq.(24) we observe that, due to interactions, the averOf [5]. Again, satisfactory agreement of the present results
age diffusion coefficient is enhanced with increasing nemati¢Vith computer simulations is found for the largest axis ratio

order. This result is in qualitative agreement with experimenQ=10. The modified affine transformation mog8] predicts
tal results[1] and computer simulatior{]. a linear dependence & on the orientational order param-

A quantitative comparison of E¢24) to computer simu-  €ter, R=BS,, whereas the present result E@5) shows a
lations of hard ellipsoidal particleE5] can be done. For More complicated dependence. Interestinglgiven by Eq.
highly elongated ellipsoids with axis rati@=5, the ex- (25 varies almost linearly witl$, for low and high orienta-
cluded volume interaction is well described by the Onsagefional ordering(see Fig. 2 Deviations from the linear be-
potential. Figure 1 shows E@24) with the mean field po- havior occur for |_nterm§d|ate ordering, which are in accor-
tential (21) together with the results of molecular dynamics dance with the simulation results. Thus, the present results
simulations of elongated hard ellipsoidal particJés For a  are similar to the predictions of the modified affine transfor-
constant valueb=2 of the reduced excluded volume, we mation model. The variations & andR on the orientational
observe good agreement with the simulation results for therder parameter predicted by the modified affine transforma-
largest axis ratid@Q=10. tion model have recently been confirmed in experimental

In Ref.[5], the modified affine transformation model was results on a thermotropic liquid crys{dl]. Within the decou-
proposed to explain the simulation results. Within thispling approximation, the order parame®&rhas been calcu-
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1

treatment presented ji1], hydrodynamic and steric interac-
tions can indeed be accounted for by a modified diffusion
coefficientD®. In either case, no explicit contribution to the
potentialU, given by Eq.(4), appears.

As discussed in Sec. Il it is helpful to distinguish between

0.8

0.6 (i) ferrofluids composed of rather spherical particles énd
&, those showing pronounced asphericity of the individual mag-
04 netic colloidal particles.
A. Weakly interacting, anisotropic ferromagnetic particles
0.2

Consider first caséi), a dilute suspension of anisotropic,
ferromagnetic particles with weak dipolar interactions. In
this caseP| andD9 are the bare diffusion coefficients of the
individual anisotropic particles parallel and perpendicular to
the magnetic moment. Remember that we assume magneti-

FIG. 2. The normalized anisotropy of diffusiéhof hard ellip- ~ cally hard particles, where the magnetic moment remains
soids as a function of the orientational order paramgjeCircles  fixed within the particle.
and squares are data from RES], corresponding to axis ratid® Under these assumptions, the diffusion fl¢8) can be
=10 andQ=5, respectively. The dashed lines are the predictions oevaluated from Eqs(8)—(10). Details of the derivation are
the affine transformation model; the solid line is the re&H with provided in Appendix B. The result for the effective diffu-

D=2 sion coefficients is
lated as a function of the reduced excluded volunfor the D, =D-3(D)-DI)Ly(&)c(&), (26)
Maier-Saupe and the potenti@l) in [26].
Dy =D +5(Df - D) La(&)c(&), (27
V. DIFFUSION IN MODERATELY CONCENTRATED where we have defined &) =1-p(dé/ dp)La(&). Note that

FERROFLUIDS the orientational order paramets can be evaluated explic-

In ferrofluids, the magnetic colloidal particles interact ity in the local equilibrium approximations,=L(&) with
with an internal magnetic fieltd. The dimensionless inter- L,(x)=1-3L,(x)/x. The average diffusion coefficienD
action energy is given by the first term on the right-hand side=(D;+2D ,)/3 in Eqgs.(26) and (27) is given by
of Eq. (4), whereh=u|H|/ksT denotes the Langevin param- _
eter. For spatially homogeneous systems, the kinetic model D =DO%(&,). (28)
(1)—(3) with the potentialuU=-hu-n has been proposed in . e
Ref.[14] to describe the dynamics of dilute ferrofluids. Here Erom'Eqs.(Zﬁ) apd (27), the amsptropy Ef diffusiorR?, de-
and in the sequeh=H/|H| denotes the direction of the in- fined in £q.(19), is found to be given bR= ROITZ(ge)’ where

i RO=(D-D9)/(D)+2DY). Since the functionLy(x) is

ternal magnetic field. bounded <1 1h . . ller than the b
Dipolar interactions can been incorporated into the potenP0Unded, &<L,<1, the anisotropyr is smaller than the bare

tial U within a mean-field approach by replacing the mag-value R°. Note that by definitiorD,~D=-2(D, ~D) holds.
netic field by an effective fieldv— &.. Different mean-field Itis interesting to note that the diffusion coefficie(@6) and
models have been proposed in the literaf@@. A common  (27) differ from the corresponding expressions for a dilute
feature of these mean-field models is that the lowest ordesuspension of anisotropic, honmagnetic partidie®g and
correction to the magnetic field is proportional to the Lange{(18) by a multiplicative factorc(&,).
vin susceptibilityy, =8\ ¢, where¢=pv is the volume frac- Sincel,(0)=0 one finds from Eq926) and(27) that the
tion andv is the volume of the ferromagnetic particles. The diffusion is isotropic in the absence of a magnetic field,
dipolar interactions parameter is defined aa D, (h=0)=D;(h=0)=D° For very strong magnetic fields,
=u?l(4mpokgTd®), where d denotes the diameter of the L,;, L,—1 and we find from Eqgs(26) and (27) that the
magnetic particles. infinite field limit of the diffusion coefficients is given by
For these systems, the equilibrium magnetization is giverDL(oo):D‘ic(oo) and DH(oo):Dﬁc(oo), with the coefficient
by M=Mg{U)=MgSin, Where Mg,=pp is the saturation ¢(«)=1-p(dé./ dp).
magnetization. In the local equilibrium approximation, the Further analysis requires explicit knowledge of the effec-
orientational order parameter is given explicitty &  tive field & and thus depends on the special mean-field
=L,(&) with L;(x)=coth(x)—x* the Langevin function. model considered. In the dilute limit and for weak dipolar
Contrary to the case of liquid crystals, steric interactionsinteractions, the Langevin susceptibility =8\ ¢ is small. In
in ferrofluids are not accounted for explicitly in this section. this case, the effective field reduces to the magnetic figld
In the spirit of[14,15, we here focus on the regime where =h. Note that due to Maxwell's equatioW-H+V -M=0,
these interactions can either be neglected or be accounted fihre magnetic field is also concentration dependent. In this
by modified diffusion coefficienD®. Within an approximate case we findc(h)=1+3y,L(h)/(1+3y,L}(h)). Sincec>1
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we observe that the average diffusion coefficient is enhancetér size distribution is found to depend strongly on the mag-
compared to the bare valu®,>DP. The analogous result Netic field and the dipolar interaction strength.

was obtained in Sec. IV for the case of nematic liquid crys- Within the chain model15], the clusters are assumed to
tals. In the infinite field limith— o, we findc()=1+3y, b€ noninteracting. Therefore, Eq6) and (27) apply for
>1 and therefore both the diffusion parallel and perpendicuc!usters of a fixed size, where the effective field, is re-

lar to the applied field are enhanced compared to the bafdlaced byh,. Let[@], denote the average over the cluster

values. size distributions. Therefore, in a suspension of clusters of
In the very dilute limit and for weak dipolar interactions different sizes, the average diffusion coefficiefD],
where the Langevin parameter becomes very smyahsl,  =[D%n)c(h,)], would be measured. The average diffusion

the functionc(h) is well approximated byc(h)~1. In this  coefficients perpendicular and parallel to the magnetic field
case, Eqsi26) and(27) reduce to Eqs13) and(14) with the 516 given by[D, ],=[D],~(1/3)A and[D,],=[D],+(2/3)A,
orientational order paramet&=L,(h). The latter equations where A=[(D0-D9)L,(hy)c(hy)], denotes the difference of

have been derived for a dilute suspension of nonmagnetigye paraliel and perpendicular diffusion coefficients. Except

particles. In this regime, where interactions between the clusg gpecial cases, the averages over the cluster size distribu-
ters are unimportant, the magnetic field merely provides the, cannot be performed analytically.

orientational order. Otherwise, the diffusion properties of the
magnetic and nonmagnetic suspensions are identical. C. Comparison to previous theoretical results

The anisotropic translational diffusion coefficients of di-
lute ferrofluids have been calculated within the mean spheri-
In case(i), where the individual magnetic particles can becal model by Morozov if11]. The influence of steric and
considered spherical, the present approach can still be usedipolar interactions on the average diffusion coefficient was

if we follow the approach of the chain model proposed in¢5nd to be given b}E:DS;{1+1-4515_(4/3)77)\XL]' Thus,

Ref.[15]. Within this model, it is assumed that dipolar inter- D is found to be ind d f th ic field h
actions lead to temporary or permanent clustering of the fers IS found to be independent of the magnetic field strength.

romagnetic particles, such that the dynamics can be adn [11], the diffusion coefficients perpendicular and parallel

scribed by a dilute suspension of effective magnetic particleto the magnetic field are given iy, =D-(1/3)aL5(h) and
of ellipsoidal shape. Under these assumptions, the presemt,=D+(2/3)aL?(h), respectively, witha= 13.38mx| Dgp
model applies not only in cagé) but also in caséi), where Contrary to the results dfl1], here the average diffusion

the individual magnetic particles have an anisotropic Shap%oefﬁcientD is found to depend on the magnetic fiékke

T.hu.ls, Eqs.(26) ﬁnd (27) rkemain validhalso in this _cl;Ese. A Eg. (28)]. Only in the very dilute regime, where the Lange-
similar approach was taken {i21], where nonequilibrium ;5 \scentibility becomes very small, this field dependence

dynamical properties of magnetic suspensions of ellipsoidg\eomes negligible. If we therefore compare the resuits of

particles were studied. I[11] to those of the present model in the very dilute regime,

Note, however, that the parameters of the model Now COlG o fing that the expressions for, andD, in [11] are of the
respond to the effective particles representing the clustersfzorm (17) and (18) if Df—DO =a denotes the differencB,
1

not the individual spherical particles. The diffusion coeffi- Ce o ; : 2

) : —D, for infinite field andL,(x) is approximated by 7(x).
cientsD?=D%n) andD® =D° (n) now denote the bare diffu- N ) 2X) pproximated byt1(x)
. .l Lo . The latter two functions are indeed very similar.

sion coefficients of the effectivay-particle cluster parallel

B. Dilute suspension of clusters

and perpendicular to its axis of symmetry. Within the chain D. Comparison to experimental results
model[15], the clusters are assumed to be chainlike with an o
ellipsoidal shape. Thus, for amparticle cluster, the axis ra-  Finally, we compare the predictions made above to the

tio Q of the ellipsoid isQ=n. If the affine transformation €XPerimental results obtained fifi]. For the ferrofiuid used
model [20] is employed, the dependenciﬁ(n)zn‘mDsp in these experiments, a value gf~1.4 is reported |r[6_].
and D (V=n""D, are predicted, wher®,, denotes the FLEOERa L Tk T T e ekdening ideal Sol-
bare, single particle diffusion coefficient of an individual, . . o 1t by 1dering

spherical particle. Further, the effective magnetic moment ofions of effective, chainlike particles of ellipsoidal shape. In

an n-particle cluster isn times bigger than that of an indi- the present case, due to the moderate valug pmoderate

vidual particle. Therefore, the Langevin parameter of theaxis ratios of the chainlike clusters are expected. Thus, the

cluster ish,=nh,, whereh, is the value for the single par- cluster size distribution is expected to be rather narrow, such
n— ]

ticle. Similarly, ,, and ¢, denote the effective dipolar inter- that the averages over the size distribution of the diffusion

action parameter and the effective volume fraction of thecoefficients can be approximated by their values for the av-

n-particle clusters, respectively, angd (n)=8\,¢, denotes ;era?ﬁ iluster SIZ€. Usmt% the .restL(Ils7_) a(\jr_lfcfi (1.8) obta#.eq i
the effective Langevin parameter. or dilute suspensions, the anisotropic diffusion coefficients

. _ O . — .
It should be emphasized that cluster formation in generaf" © predicted jto S(.:ale Em‘v{ .D_OCSZ with S=La(h), Wh'le
leads to a broad distribution of cluster siZs). Let g, the average diffusion coefficiet should be constant, inde-

denote the number af-particle clusters per unit volume of pendent of the magnetic fie[dee Eq(16)]. '
the system. An explicit expression fgy was derived if15] Figure 3 shows the normalized average diffusion coeffi-
by minimizing an appropriate free energy function. The cluscient D/D° as a function of the Langevin parameter
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Y e L S B S B S B R R VI. CONCLUSIONS

A unified approach to the anisotropic diffusion in liquid
115 - crystals and in ferrofluids is proposed. Based on a mean-field
) kinetic equation, explicit expressions for the diffusion coef-
o | ficients parallel and perpendicular to the director and mag-
netic field have been derived.
a | i In the dilute limit, common expressions for the diffusion
o °® coefficients are found for both, liquid crystals and ferroflu-
105 7 ids, showing the common origin of the phenomenon in both
PY i liquids. In both kinds of fluids, the anisotropy of the particle
or cluster shape provides the basic mechanism for the aniso-
&, . . _tropic diffusic_m. For higher concen_trations, whgn the specific
0 I ) 3 4 G 6 7 interparticle interactions become important, different depen-
Langevin parameter h dences of the diffusion coefficients on the orientational order
parameters are found. This difference is directly related to
FIG. 3. The normalized average diffusion coeffici@tDO is the difference of the excluded volume and dipolar interac-
shown as a function of the Langevin paraméieData are taken tions, which dominate the dynamics in liquid crystals and in
from Ref.[6]. The solid line is the prediction for noninteracting, ferrofluids, respectively.
chainlike particles. The present results for liquid crystals are similar to the
predictions of the modified affine transformation mofk]
Within 10%, the average diffusion coefficient remains con-while the results for ferrofluids are similar to those of Bacri
stant. Upon closer inspection, a slight increas®afith his ~ [6] and Morozov[11]. Further comparisons with computer
observed. This increase can be explained by dipolar interagimulations and experimental results show satisfactory
tions between the chainlike particles. In that czi_e;és given agreement. Except for elucidating the common origin of the

by Eq. (28), wherec has to be evaluated with the effective anisotropic diffusion in both kinds of fluids, the main benefit
param.eters’ of the chainlike particles of the present approach is that the same kinetic models that

Figure 4 shows the reduced diffusion coefficieiB are used to predict viscous properties and the orientational
~D%/D° and (D, -D%/D° as a function of the Lange\I/in dynamics can now also be used to predict diffusion proper-
parameteh Figuire 4 shows that the experimental data foI_ties. It would be very interesting to see whether the available

low nicely the predicted behavidd, , ~D%L,. Small cor- kinetic models can describe all the dynamical properties of

rections to this behavior due to interactions of the clusters atshese fluids with the same set of material parameters.

indicated by the results shown in Fig. 3 can be included via
Egs. (26) and (27) using the effective parameters for the

/D’
T
®
|
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*~osl APPENDIX A: DERIVATION OF DIFFUSION
=~ | COEFFICIENTS FOR NEMATIC LIQUID CRYSTALS
°n 0.4

In this appendix, the derivation of the anisotropic diffu-
sion coefficientg22) and(23) is outlined.

The contribution of the diffusion floy! due to the mean-
field interaction potentidl is given by Eq(10). For nematic
liquid crystals, we consider potentials of the forkd
=U,(p)uu:{uu), where the strength of the interaction de-
pends on the local concentration. We assume a spatially ho-
mogeneous uniaxial ordering, where the distribution function
is of the form given in Eq(11) with S(r)=S§;.

e 0.2

-0.2

-04

FIG. 4. The reduced diffusion coefficientéD  —D?)/D° The diffusi U :
. . e diffusion flowj"~ contains two moments that have to
(squares and (D,-DY/DP (circles as a function of the order pa- J

rameterS, defined in the text. Data are taken from Rig]. The be evaluated. Ewst(VU)-((uu).<uu>)VU1, Wher(? VU,
dashed lines correspond to the fit presented in F&f.while the = (9U1/dp) V p. With Eq. (11), the second moment is evalu-
solid lines are the result of a linear relation proposed in this work ated to give(uu)=Snn+[(1-$,)/3]1. Therefore, one finds
assuming noninteracting, chainlike particles. (VU)Z%%V U,.
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In order to evaluate also the tertou-VU), the fourth
moment is needed,

Sy
—n(a nﬁ5 ,},5) + C45(a,8 6

(UUgU g = SN, NN N5+ Z

)1
(A1)

where C,=(7-105,+3S,)/105 andA,z,s denotes the sum
over the symmetrization of the express[@d]. With the help
of Eq. (A1), the term{uu-VU) can be evaluated to give

(Uy/p)Znn-Vp
(A2)

(uu-VU) = (Uy/p)S , (1-nn)-Vp+

whereU; and %, , are defined after Eq(22). With these
results, the diffusion flow=j°+j" can be expressed s
=D, (1-nn)-p+Dynn-Vp, where the diffusion coefficients
D, D, are given by Eqs(22) and (23).

APPENDIX B: DERIVATION OF DIFFUSION
COEFFICIENTS FOR FERROFLUIDS

Here, we briefly outline the derivation of the anisotropic

diffusion coefficients27) and(26).

The diffusion flowjS is given by Eq.(9). In the local
equilibrium approximation, the second momefut,us) is
given by
(B1)

(UUg) = Lo(EH g+

1-L (ge)

where &, is the local effective field. Using EqB1), the
diffusion flow jS is given by

g - 1
jS=-(D)-D%)p—= %( HH-Vp—éLng> (B2)

whereL;=dL,(&)/d&, denotes the total derivative. For the
ease of notation, the argumefitof the functionsL; is sup-
pressed here. From E¢B2), the diffusion flowjé can be
written in the formjS=-DS$ (1-HH)-V p-D>V p, where the
diffusion coefficients can be read off,

PHYSICAL REVIEW E 71, 051407(2009

9&e

1
DS =- g(Dﬁ - D(DP_sz (B3)

2
= §<D Di)p—Lz (B4)

Next, we consider the potential contribution of the diffu-
sion flowjY, defined in Eq(10). Within the local equilibrium
approximation, the interaction potential is given k=
=&u ‘H. The gradient of the potential is therefore given by
VU=-(u-H)d&ldpV p. For the diffusion flowjY, the mo-
ments(VU) and{uu- VU) have to be evaluated. In the local
equilibrium approximation one find¥U)=-L4(d&./dp) V p.
With the help of the third moment

~oaa Ly-
(UUgt) = LgH HgH  + = bl o83y Hgduy+ H 005,

(B5)
wherelLs(&)=L1(&) —5L,(&)/ &, also, the moment

~ €
(UgugV gU) = = (uauﬁu,)Hy(?—eVBp (B6)

can be evaluated. Inserting these relations into the diffusion
flow jV, Eq. (10), it becomegV=-DY(1-HH) V,-D/'V,,
where

L,—-L
DV=-p §e[DOL1+(D Dﬂ)%], (B7)
¢, 3L+ 2L
D”=—p(9—:[D‘iLl+(D°—D‘i)—15 3} (88)

Summing the different contributions to the total diffusion
flow j, Eq. (7), the total diffusion coefficient§27) and (26)

are obtained from Eq$17), (18), (B3), (B4), (B7), and(B8).

The resulting expression has been simplified by use of the
mathematical identity  Ly(x)—[2L(x)+3L3(x)]/5=
—L1(X)La(X).
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