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A unified, mean-field kinetic theory approach to the anisotropic translational diffusion observed in liquid
crystals and in ferrofluids is proposed. In the dilute regime, unified expressions for the parallel as well as for
the perpendicular diffusion coefficient in terms of orientational order parameters are found that apply for liquid
crystals as well as for ferrofluids. This result explains the common origin of the anisotropic diffusion found in
liquid crystals and in ferrofluids. Differences between the two liquids appear in the semi-dilute regime, where
the diffusion coefficients depend on the specific interaction potentials. Explicit expressions for the diffusion
coefficients are worked out also in this regime within a mean-field approximation. Comparisons with previous
theoretical and experimental results are performed, showing satisfactory agreement to the present results.
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I. INTRODUCTION

Anisotropic translational diffusion has been observed in
experimental investigationsf1–3g and computer simulations
f4,5g of nematic liquid crystals as well as in experiments on
ferrofluids f6g. In liquid crystals, the anisotropy is described
by the direction of the nematic ordern, while in ferrofluidsn
denotes the direction of the magnetic field. It is observed in
both systems that the translational diffusion parallel to the
director is enhanced while the diffusion in the perpendicular
direction is decreased when compared to the isotropic values.
While so far different models have been proposed in order to
explain these phenomena separately, we here propose a uni-
fied approach based on a kinetic model. This approach has
the additional benefit that the kinetic models considered here
are also used in order to describe other dynamical and rheo-
logical properties. The predictions of the present approach
are compared with those of the modified affine transforma-
tion model for liquid crystalsf5g and with the mean-field
model proposed in Ref.f6g to describe the anisotropic diffu-
sion in ferrofluids found in their experiments.

Both kinds of fluids show additional anisotropic macro-
scopic properties like anisotropic viscosities, for example
f7g. A phenomenological so-called modified affine transfor-
mation model has been proposed in order to account for
anisotropic viscosities in liquid crystalsf8g This model is
also able to describe computer simulation results of aniso-
tropic diffusionf5g. Results of recent experimental studies on
the anisotropic diffusion in a thermotropic liquid crystal are
well described by this modelf1,2g. An earlier approach based
on the hydrodynamic theory of isotropic liquidsf9g was
found to be incompatible with the experimental results in
f1,2g. In the case of ferrofluids, the methods used to derive
diffusion coefficientsf6,10,11g have not directly been ap-
plied in order to predict also viscous behavior and vice versa.

A complementary approach to the dynamics of aniso-
tropic fluids by kinetic models has proven to be very useful
in order to provide a better microscopic understanding of the

macroscopic phenomena. In the case of nematic liquid crys-
tals, the kinetic model proposed independently by Hessf12g
and Doif13g is still widely used in order to describe various
dynamical and rheological properties of liquid crystals. In
ferrofluids, a similar role is played by the kinetic model pro-
posed by Martsenyuket al. f14g and later on generalized by
Zubarevet al. f15g. In the present work, we propose a kinetic
theory approach building upon these models in order to ex-
plain and describe the common origin and the differences of
the anisotropic diffusion in liquid crystals and in ferrofluids.

This paper is organized as follows. In Sec. II the unified
kinetic model for the dynamics of liquid crystals and ferrof-
luid is introduced. For dilute systems of nonmagnetic par-
ticles, expressions for the diffusion coefficients are derived
in Sec. III. The corresponding diffusion coefficients are
worked out for nematic liquid crystals in Sec. IV and for
ferrofluids in Sec. V. It is shown that in certain limiting
cases, the diffusion coefficients reduce to those derived in
Sec. III. Finally, some conclusions are offered in Sec. VI.

II. KINETIC MODEL

The microstructure of both nematic liquid crystals and
ferrofluids can be described by a vectoru on the three-
dimensional unit sphere. In the case of nematic liquid crys-
tals,u denotes the orientation of the liquid crystal molecules,
while in the case of ferrofluidsu denotes the orientation of
the magnetic moment of the ferromagnetic colloidal par-
ticles. In ferrofluids, two main relaxation mechanisms for the
magnetic moment are known. In the Brownian relaxation,
the particle as a whole rotates, while in the Néel relaxation
the magnetic moment rotates within the particle. Following
Ref. f14g, we here employ the so-called rigid dipole approxi-
mation, i.e., we assume that the anisotropy constant of the
magnetic material is sufficiently large that the moment re-
mains parallel to the easy axes of the ferromagnetic particle.
In this case, the unit vectoru characterizes also the orienta-
tion of the ferromagnetic particle. In order to investigate
translational diffusion, spatial inhomogeneities have to be
included into the description. Letfsr ,u ; td denote the prob-
ability distribution function of finding a moleculesliquid*Email address: ilg@physik.tu-berlin.de

PHYSICAL REVIEW E 71, 051407s2005d

1539-3755/2005/71s5d/051407s9d/$23.00 ©2005 The American Physical Society051407-1



crystal or ferromagnetic colloidd with orientationu at posi-
tion r at timet. The orientational distribution functioncsu ; td
is recovered ascsu ; td=ed3rf sr ,u ; td, while the number den-
sity is computed byrsr ; td=ed2ufsr ,u ; td. The normalization
is chosen ased3rd2ufsr ,u ; td=N, with N being the number of
particles. In the sequel, we assume particles of ellipsoidal
shape. Then, the translational and rotational dynamics under
the influence of Brownian motion and the potentialU
=V/kBT can be described by the following Fokker-Planck
equationf16–18g

]

]t
f = sLtr + Lrotdf , s1d

where the translational and rotational parts read

Ltrf = = · hDi
0uu + D'

0 s1 − uudj · s= f + f = Ud s2d

and

Lrotf = DrL · sLf + fLUd, s3d

where==] /]r,L=u3] /]u denotes the rotational operator,
Dr is the rotational diffusion coefficient, andDi

0, D'
0 are the

bare translational diffusion coefficients parallel and perpen-
dicular to the axes of the molecule, respectively. For prolate
ellipsoidal particles, one hasDi

0.D'
0 , while the opposite

sign holds for oblate ellipsoidal particles. For moderate axis
ratios, recent molecular dynamics simulation results indicate
thatDi andD' are proportional to the axis ratioQ f19g. For
rodlike particles with large axes ratiosQ=a/b@1, wherea
andb denote the semi-axes, the diffusion coefficientsDi

0 and
D'

0 are well approximated by Di
0=2D'

0

=kBT lnsa/bd /2phsa, wherehs is the viscosity of the solvent
andkB andT denote Boltzmann’s constant and temperature,
respectivelyf7g. For moderate axes ratiosQ, useful expres-
sions have been derived in Ref.f20g within the affine trans-
formation model which predictsD'

0 =Q−2/3Dsp and Di
0

=Q4/3Dsp, whereDsp is the corresponding diffusion coeffi-
cient of spherical particles.

In ferrofluids, depending on details of the preparation
conditions, the ferromagnetic particles are either more or less
sphericalsid or show pronounced asphericitysii d, e.g., due to
permanent clustering. In casesii d, the present approach is
directly applicable. To deal with the first case, we follow
Refs.f15,21g and define effective ellipsoidal particles repre-
senting temporary or permanent aggregates due to dipolar
interactions. In the latter case, we assume that the axis ratio
of the effective ellipsoidal particles varies only weakly with
the magnetic field. Then, the axis ratio is determined solely
by the value of the dipolar interaction. Casessid andsii d will
be considered in more detail in Secs. V B and V A, respec-
tively.

The equilibrium distribution f0sr ,ud=exps−Ud /Z, Z
=ed3rd2u exps−Ud, is the stationary solution to the kinetic
equations1d. In the sequel, we assume that the interaction
potential is of the form

Usr,ud = − u ·h + U1uu:a
9

, s4d

where h=mH /kBT is the reduced magnetic field,m is the
magnetic moment of the particle, anda=ed2ufsr ,u ; tduu

9
de-

notes the second rank orientational order parameter tensor
with a

9
;sa+aTd /2−s1/3d1 the symmetric traceless part of

the matrixa and1 the unit matrix. For nematic liquid crys-
tals, the magnetic momentm is usually very small, so that the
first term in Eq.s4d may be neglected. For ferrofluids, on the
contrary, due to the large magnetic moment of the ferromag-
netic particles, the magnetic field energy represented by the
first term in Eq.s4d is significant. Usually, the contribution of
the second term in Eq.s4d can be neglected compared with
the first term, at least for moderate concentrations. To lowest
order, magnetic dipolar interactions can be incorporated in a
mean-field description by replacing the magnetic fieldH by
an effective fieldf22g. Thus, the second term in Eq.s4d may
be neglected in the case of ferrofluids. Equationss1d–s3d
have been proposed to describe the dynamics of nematic liq-
uid crystals. Here, we propose that these equations with the
corresponding choice for the potentialU are also valid for
ferrofluids within the rigid dipole approximation. For a spa-
tially homogeneous situation,Ltr does not contribute to the
dynamics. In this case, Eqs.s1d–s3d reduce to the kinetic
model of nematic liquid crystals proposed in Refs.f12,13g
and to the kinetic model of ferrofluids introduced in Ref.
f14,15g, respectively. Here, spatially homogeneous external
magnetic fields are considered. Due to Maxwell’s relation
= ·H + = ·M =0, the internal magnetic fieldH becomes spa-
tially inhomogeneous only if the magnetization, due to con-
centration gradients, becomes spatially inhomogeneous.

For the case of nematic liquid crystals, Eqs.s1d–s4d with
h=0 have been used in Ref.f23g in order to study the influ-
ence of the anisotropic diffusion coefficients on the Franck
elasticity coefficients.

It should be stressed that the kinetic model defined by
Eqs.s1d–s3d neglects hydrodynamic interactions between the
particles. While hydrodynamic interactions are known to af-
fect dynamical properties, the model defined above has been
of great help to study various dynamical properties of nem-
atic liquid crystals and ferrofluidsf3,7g. Therefore, the
present work can be useful to study the influence of orienta-
tional order and interaction potentials on the diffusion, leav-
ing the effect of hydrodynamic interactions for future stud-
ies.

Integrating the kinetic equations1d over all orientationsu
we arrive at the continuity equation

]

]t
rsr ;td =E d2usLtr + Lrotdfsr,u;td = − =·jsr ;td, s5d

with the diffusion flow

jsr,td = −E d2uhDi
0uu + D'

0 s1 − uudj · f= fsr,u;td

+ fsr,u;td = Usr,udg. s6d

Note, that although the rotational operatorLrot does not con-
tribute to the diffusion flow, the coupling of translational and
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rotational motion appears inj via the diffusion tensorsfor
Di

0ÞD'
0 d and the interaction potential.

If we define the distribution functionwsr ,u ; td by
fsr ,u ; td=rsr ; tdwsr ,u ; td, the normalizationed2uf=r re-
quires ed2uw;k1l=1. Then, the diffusion flows6d can be
written as

jsr ;td = j0sr ;td + jSsr ;td + jUsr ;td s7d

with

j0 = − D'
0 = r − sDi

0 − D'
0 dkuul·=r, s8d

the contribution from spatially inhomogeneous ordering

jS= − sDi
0 − D'

0 dr=·kuul, s9d

and the contribution from the interaction potential

jU = − D'
0 rk=Ul − sDi

0 − D'
0 drkuu·=Ul. s10d

Evaluation of the diffusion coefficients via the diffusion flow
thus requires the calculation of the moments appearing in
Eqs.s8d–s10d.

The equilibrium distributionw0 is uniaxially symmetric
with respect to the directorn. Uniaxial distribution functions
can be represented by

wunisr,u ·n;td = o
j=0

`

s2j + 1dSjsr ;tdPjsu ·nd, s11d

wherePjsxd denotes the Legendre polynomial of orderj and
Sj are the orientational order parameters, −1/2øSj ø1. For
liquid crystals, only even terms appear in Eq.s11d due to
their head-tail symmetry. For ferrofluids, this symmetry is
broken by the magnetic moments of the particles. Conse-
quently, all terms appear in Eq.s11d. The implications of
uniaxial symmetry on equilibrium and nonequilibrium prop-
erties of liquid crystals and ferrofluids have been considered,
e.g., in Refs.f21,24,25g.

III. DILUTE SUSPENSIONS OF ANISOTROPIC
COLLOIDAL PARTICLES

For dilute systems, the interaction contribution to the
mean field potentialU, Eq. s4d, can be neglected. Further-
more, if we consider nonmagnetic particles, the contribution
of the magnetic field to the potentialU also vanishes. There-
fore, no contribution of the interaction potential to the diffu-
sion flow appears,jU=0. For a spatially homogeneous order-
ing with uniaxial symmetry, i.e.,Sjsrd=Sj and nsrd=n are
independent ofr, alsojS vanishes. Equations8d can be evalu-
ated to give

j = j0 = − D's1 − nnd·=r − Dinn·=r, s12d

where the effective diffusion coefficients are given by

D' = D'
0 +

1 − S2

3
sDi

0 − D'
0 d s13d

and

Di = Di
0 − 2

3s1 − S2dsDi
0 − D'

0 d. s14d

Equationss13d and s14d are our main result in this section.
As will be shown later, these expressions hold not only for
dilute nematic liquid crystals but also for very dilute ferrof-
luids, if both are subjected to Brownian motion in a spatially
homogeneous potential. In the case of perfect orientational
order we haveS2=1. In this case, we find from Eqs.s13d and
s14d D'=D'

0 , Di=Di
0, i.e., the effective diffusion coefficients

reduce to their bare values. The average diffusion coefficient
is defined by

D̄ ; 1
3sDi + 2D'd. s15d

In the present case, the average diffusion coefficient

D̄ = 1
3sDi

0 + 2D'
0 d = D0 s16d

is found to be constant, independent of the degree of orien-
tational order. In the presence of orientational ordering, the
difference of the expressionss13d ands14d reflects the aniso-
tropy of the translational diffusion,

D' − D0 = − 1
3sDi

0 − D'
0 dS2 s17d

and

Di − D0 = 2
3sDi

0 − D'
0 dS2. s18d

In qualitative agreement with experimental results, the diffu-
sion perpendicular to the directorn is decreased while it is
enhanced parallel ton when compared to the isotropic value,
the anisotropy being more pronounced the stronger is the
orientational ordering.

Following Ref.f5g, we define the ratio

R;
Di − D'

Di + 2D'

s19d

in order to characterize the anisotropy of diffusion. The value
for the perfectly ordered liquid isR0=sDi

0−D'
0 d / sDi

0+2D'
0 d.

In the present case we find

R= R0S2. s20d

A linear dependence ofR on S2 is confirmed by computer
simulations of hard ellipsoidsf5g. The results16d for the
average diffusion coefficient is in disagreement with experi-
mentsf1g and simulation resultsf5g. This discrepancy is due
to interactions between the particles as will be demonstrated
in the next section.

IV. DIFFUSION IN NEMATIC LIQUID CRYSTALS

The kinetic model of rotational dynamics of nonmagnetic,
elongated particles, Eqs.s1d ands3d, was proposed indepen-
dently by Hessf12g and Doif13g. These equations provide a
very useful model system for nematic liquid crystals that has
been studied extensivelyf3,7g. The mean-field potentials4d
with h=0 is frequently chosen as the Maier-Saupe potential,
where the strength of the interactionU1 is proportional to the
local densityr f3,7g. Excluded volume interactions of rod-
like particles are more accurately described by the Onsager
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potentialf7g. Further manipulations with the Onsager poten-
tial are hindered by its complicated structure. However, sys-
tematic approximations have been suggested inf26g which
lead to more tractable potentials. The lowest order approxi-
mation to the Onsager potential is of the forms4d with

U1 = Fs1 − s3/2da:ad−1/2 s21d

depending on the reduced excluded volumeF and the orien-
tational order parametera. In the uniaxial regime, where Eq.
s11d applies, a=S2nn

9
and the Onsager potential becomes

U1=Fs1−S2
2d−1/2. For rodlike particles, the reduced excluded

volume isF=2b,2r, where 2b and , are the diameter and
length of the particles. The following results hold for arbi-
trary potentials of the formU1sr ,ad. Inserting Eq.s4d into
s6d and performing the integration over the orientations, the
diffusion flow contains second- and fourth-order moments.
Assuming again a spatially homogeneous uniaxial nematic
order, the diffusion flowj = j0+ jU is of the forms12d with the
effective diffusion coefficients

D' = D'
0 s1 + Ũ1S2

2d + sDi
0 − D'

0 dS1 − S2

3
+ Ũ1S2S'D

s22d

and

Di = D'
0 s1 + Ũ1S2

2d + sDi
0 − D'

0 dS1 + 2S2

3
+ Ũ1S2SiD ,

s23d

whereŨ1= 2
3rs]U1/]rd, S'=s−7+25S2−18S4d /105, andSi

=s14+55S2+36S4d /105. Some details of the derivation are
provided in Appendix A. For the Maier-Saupe potential and
the potentials21d, the strength of the potentialU1 is propor-

tional to the densityr. Thus, it follows thatŨ1= 2
3U1, which

depends on the density and, in the case of the potentials21d,
also on the alignment tensora.

In the limit of vanishing interactions,U1→0, Eqs.s22d
and s23d coincide with Eqs.s13d and s14d. From Eqs.s22d
and s23d, the average diffusion constantD̄ is computed as

D̄ = D0s1 + Ũ1S2
2d. s24d

From Eq.s24d we observe that, due to interactions, the aver-
age diffusion coefficient is enhanced with increasing nematic
order. This result is in qualitative agreement with experimen-
tal resultsf1g and computer simulationsf4g.

A quantitative comparison of Eq.s24d to computer simu-
lations of hard ellipsoidal particlesf5g can be done. For
highly elongated ellipsoids with axis ratioQ*5, the ex-
cluded volume interaction is well described by the Onsager
potential. Figure 1 shows Eq.s24d with the mean field po-
tential s21d together with the results of molecular dynamics
simulations of elongated hard ellipsoidal particlesf5g. For a
constant valueF=2 of the reduced excluded volume, we
observe good agreement with the simulation results for the
largest axis ratioQ=10.

In Ref. f5g, the modified affine transformation model was
proposed to explain the simulation results. Within this

model, the average diffusion coefficient is predicted to be

given by D̄=D0s1+2BS2d−1/3s1−BS2d−2/3, where B=sQ2

−1d / sQ2+2d. Although the functional form is different, the
two expressions lead to similar results for highly elongated
ellipsoids, as demonstrated in Fig. 1.

From Eqs.s22d ands23d, the ratioR, defined in Eq.s19d is
given by

R= R01 + Ũ1sSi − S'd

1 + Ũ1S2
2

S2. s25d

In the dilute limit, Ũ1→0, the results19d is recovered from
Eq. s25d. For a quantitative comparison to experiments or
simulation results, one has to supply the missing information
on S4. Ehrentraut and Hess have estimatedS4<S2f1−s1
−S2dng, with n=0.6 on the basis of an ansatz for the orienta-
tional distribution functionf8g. Figure 2 showsR as a func-
tion of S2 with this ansatz forS4 and a comparison to the
modified affine transformation model and simulation results
of f5g. Again, satisfactory agreement of the present results
with computer simulations is found for the largest axis ratio
Q=10. The modified affine transformation modelf5g predicts
a linear dependence ofR on the orientational order param-
eter, R=BS2, whereas the present result Eq.s25d shows a
more complicated dependence. Interestingly,R given by Eq.
s25d varies almost linearly withS2 for low and high orienta-
tional orderingssee Fig. 2d. Deviations from the linear be-
havior occur for intermediate ordering, which are in accor-
dance with the simulation results. Thus, the present results
are similar to the predictions of the modified affine transfor-

mation model. The variations ofD̄ andR on the orientational
order parameter predicted by the modified affine transforma-
tion model have recently been confirmed in experimental
results on a thermotropic liquid crystalf1g. Within the decou-
pling approximation, the order parameterS2 has been calcu-

FIG. 1. The average diffusion coefficientD̄ of hard ellipsoids as
a function of the orientational order parameterS2. Circles and
squares are data from Ref.f5g, corresponding to axis ratiosQ=10
andQ=5, respectively. The dashed lines are the predictions of the
affine transformation model; the solid line is the results24d with
F=2.
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lated as a function of the reduced excluded volumeF for the
Maier-Saupe and the potentials21d in f26g.

V. DIFFUSION IN MODERATELY CONCENTRATED
FERROFLUIDS

In ferrofluids, the magnetic colloidal particles interact
with an internal magnetic fieldH. The dimensionless inter-
action energy is given by the first term on the right-hand side
of Eq. s4d, whereh=muH u /kBT denotes the Langevin param-
eter. For spatially homogeneous systems, the kinetic model
s1d–s3d with the potentialU=−hu ·n has been proposed in
Ref. f14g to describe the dynamics of dilute ferrofluids. Here
and in the sequel,n=H / uH u denotes the direction of the in-
ternal magnetic field.

Dipolar interactions can been incorporated into the poten-
tial U within a mean-field approach by replacing the mag-
netic field by an effective fieldh→je. Different mean-field
models have been proposed in the literaturef22g. A common
feature of these mean-field models is that the lowest order
correction to the magnetic field is proportional to the Lange-
vin susceptibilityxL =8lf, wheref=rv is the volume frac-
tion andv is the volume of the ferromagnetic particles. The
dipolar interactions parameter is defined asl
=m2/ s4pm0kBTd3d, where d denotes the diameter of the
magnetic particles.

For these systems, the equilibrium magnetization is given
by M =Msatkul=MsatS1n, where Msat=rm is the saturation
magnetization. In the local equilibrium approximation, the
orientational order parameter is given explicitly asS1
=L1sjed with L1sxd=cothsxd−x−1 the Langevin function.

Contrary to the case of liquid crystals, steric interactions
in ferrofluids are not accounted for explicitly in this section.
In the spirit of f14,15g, we here focus on the regime where
these interactions can either be neglected or be accounted for
by modified diffusion coefficientD0. Within an approximate

treatment presented inf11g, hydrodynamic and steric interac-
tions can indeed be accounted for by a modified diffusion
coefficientD0. In either case, no explicit contribution to the
potentialU, given by Eq.s4d, appears.

As discussed in Sec. II it is helpful to distinguish between
sid ferrofluids composed of rather spherical particles andsii d
those showing pronounced asphericity of the individual mag-
netic colloidal particles.

A. Weakly interacting, anisotropic ferromagnetic particles

Consider first casesii d, a dilute suspension of anisotropic,
ferromagnetic particles with weak dipolar interactions. In
this case,Di

0 andD'
0 are the bare diffusion coefficients of the

individual anisotropic particles parallel and perpendicular to
the magnetic moment. Remember that we assume magneti-
cally hard particles, where the magnetic moment remains
fixed within the particle.

Under these assumptions, the diffusion flows6d can be
evaluated from Eqs.s8d–s10d. Details of the derivation are
provided in Appendix B. The result for the effective diffu-
sion coefficients is

D' = D̄ − 1
3sDi

0 − D'
0 dL2sjedcsjed, s26d

Di = D̄ + 2
3sDi

0 − D'
0 dL2sjedcsjed, s27d

where we have definedcsjed=1−rs]je/]rdL1sjed. Note that
the orientational order parameterS2 can be evaluated explic-
itly in the local equilibrium approximation,S2=L2sjed with

L2sxd=1−3L1sxd /x. The average diffusion coefficientD̄
=sDi+2D'd /3 in Eqs.s26d and s27d is given by

D̄ = D0csjed. s28d

From Eqs.s26d and s27d, the anisotropy of diffusionR, de-
fined in Eq.s19d, is found to be given byR=R0L2sjed, where
R0=sDi

0−D'
0 d / sDi

0+2D'
0 d. Since the function L2sxd is

bounded, 0øL2ø1, the anisotropyR is smaller than the bare

value R0. Note that by definitionDi−D̄=−2sD'−D̄d holds.
It is interesting to note that the diffusion coefficientss26d and
s27d differ from the corresponding expressions for a dilute
suspension of anisotropic, nonmagnetic particless17d and
s18d by a multiplicative factorcsjed.

SinceL2s0d=0 one finds from Eqs.s26d ands27d that the
diffusion is isotropic in the absence of a magnetic field,
D'sh=0d=Dish=0d=D0. For very strong magnetic fields,
L1, L2→1 and we find from Eqs.s26d and s27d that the
infinite field limit of the diffusion coefficients is given by
D's`d=D'

0 cs`d and Dis`d=Di
0cs`d, with the coefficient

cs`d=1−rs]je/]rd.
Further analysis requires explicit knowledge of the effec-

tive field je and thus depends on the special mean-field
model considered. In the dilute limit and for weak dipolar
interactions, the Langevin susceptibilityxL =8lf is small. In
this case, the effective field reduces to the magnetic fieldje
<h. Note that due to Maxwell’s equation= ·H + = ·M =0,
the magnetic field is also concentration dependent. In this
case we findcshd=1+3xLL1shd / s1+3xLL18shdd. Sincec.1

FIG. 2. The normalized anisotropy of diffusionR of hard ellip-
soids as a function of the orientational order parameterS2. Circles
and squares are data from Ref.f5g, corresponding to axis ratiosQ
=10 andQ=5, respectively. The dashed lines are the predictions of
the affine transformation model; the solid line is the results25d with
F=2.
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we observe that the average diffusion coefficient is enhanced

compared to the bare value,D̄.D0. The analogous result
was obtained in Sec. IV for the case of nematic liquid crys-
tals. In the infinite field limit,h→`, we find cs`d=1+3xL

.1 and therefore both the diffusion parallel and perpendicu-
lar to the applied field are enhanced compared to the bare
values.

In the very dilute limit and for weak dipolar interactions
where the Langevin parameter becomes very small,xL !1,
the functioncshd is well approximated bycshd<1. In this
case, Eqs.s26d ands27d reduce to Eqs.s13d ands14d with the
orientational order parameterS2=L2shd. The latter equations
have been derived for a dilute suspension of nonmagnetic
particles. In this regime, where interactions between the clus-
ters are unimportant, the magnetic field merely provides the
orientational order. Otherwise, the diffusion properties of the
magnetic and nonmagnetic suspensions are identical.

B. Dilute suspension of clusters

In casesid, where the individual magnetic particles can be
considered spherical, the present approach can still be used,
if we follow the approach of the chain model proposed in
Ref. f15g. Within this model, it is assumed that dipolar inter-
actions lead to temporary or permanent clustering of the fer-
romagnetic particles, such that the dynamics can be de-
scribed by a dilute suspension of effective magnetic particles
of ellipsoidal shape. Under these assumptions, the present
model applies not only in casesii d but also in casesid, where
the individual magnetic particles have an anisotropic shape.
Thus, Eqs.s26d and s27d remain valid also in this case. A
similar approach was taken inf21g, where nonequilibrium
dynamical properties of magnetic suspensions of ellipsoidal
particles were studied.

Note, however, that the parameters of the model now cor-
respond to the effective particles representing the clusters,
not the individual spherical particles. The diffusion coeffi-
cientsDi

0=Di
0snd andD'

0 =D'
0 snd now denote the bare diffu-

sion coefficients of the effective,n-particle cluster parallel
and perpendicular to its axis of symmetry. Within the chain
modelf15g, the clusters are assumed to be chainlike with an
ellipsoidal shape. Thus, for ann-particle cluster, the axis ra-
tio Q of the ellipsoid isQ=n. If the affine transformation
model f20g is employed, the dependenciesDi

0snd=n−2/3Dsp

and D'
0 snd=n4/3Dsp are predicted, whereDsp denotes the

bare, single particle diffusion coefficient of an individual,
spherical particle. Further, the effective magnetic moment of
an n-particle cluster isn times bigger than that of an indi-
vidual particle. Therefore, the Langevin parameter of the
cluster ishn=nh1, whereh1 is the value for the single par-
ticle. Similarly, ln andfn denote the effective dipolar inter-
action parameter and the effective volume fraction of the
n-particle clusters, respectively, andxLsnd=8lnfn denotes
the effective Langevin parameter.

It should be emphasized that cluster formation in general
leads to a broad distribution of cluster sizesf15g. Let gn
denote the number ofn-particle clusters per unit volume of
the system. An explicit expression forgn was derived inf15g
by minimizing an appropriate free energy function. The clus-

ter size distribution is found to depend strongly on the mag-
netic field and the dipolar interaction strength.

Within the chain modelf15g, the clusters are assumed to
be noninteracting. Therefore, Eqs.s26d and s27d apply for
clusters of a fixed sizen, where the effective fieldje is re-
placed byhn. Let fPgn denote the average over the cluster
size distributions. Therefore, in a suspension of clusters of

different sizes, the average diffusion coefficientfD̄gn

=fD0sndcshndgn would be measured. The average diffusion
coefficients perpendicular and parallel to the magnetic field

are given byfD'gn=fD̄gn−s1/3dD andfDign=fD̄gn+s2/3dD,
whereD=fsDi

0−D'
0 dL2shndcshndgn denotes the difference of

the parallel and perpendicular diffusion coefficients. Except
for special cases, the averages over the cluster size distribu-
tion cannot be performed analytically.

C. Comparison to previous theoretical results

The anisotropic translational diffusion coefficients of di-
lute ferrofluids have been calculated within the mean spheri-
cal model by Morozov inf11g. The influence of steric and
dipolar interactions on the average diffusion coefficient was

found to be given byD̄=Dspf1+1.45f−s4/3dplxLg. Thus,

D̄ is found to be independent of the magnetic field strength.
In f11g, the diffusion coefficients perpendicular and parallel

to the magnetic field are given byD'=D̄−s1/3daL1
2shd and

Di=D̄+s2/3daL1
2shd, respectively, witha=13.38pxLDsp.

Contrary to the results off11g, here the average diffusion

coefficientD̄ is found to depend on the magnetic fieldfsee
Eq. s28dg. Only in the very dilute regime, where the Lange-
vin susceptibility becomes very small, this field dependence
becomes negligible. If we therefore compare the results of
f11g to those of the present model in the very dilute regime,
we find that the expressions forD' andDi in f11g are of the
form s17d and s18d if Di

0−D'
0 =a denotes the differenceDi

−D' for infinite field andL2sxd is approximated byL1
2sxd.

The latter two functions are indeed very similar.

D. Comparison to experimental results

Finally, we compare the predictions made above to the
experimental results obtained inf6g. For the ferrofluid used
in these experiments, a value ofxL <1.4 is reported inf6g.
According to the chain modelf15g, the effect of dipolar in-
teractions is taken into account by considering ideal solu-
tions of effective, chainlike particles of ellipsoidal shape. In
the present case, due to the moderate value ofxL, moderate
axis ratios of the chainlike clusters are expected. Thus, the
cluster size distribution is expected to be rather narrow, such
that the averages over the size distribution of the diffusion
coefficients can be approximated by their values for the av-
erage cluster size. Using the resultss17d and s18d obtained
for dilute suspensions, the anisotropic diffusion coefficients
are predicted to scale asDi,'−D0~S2 with S2=L2shd, while

the average diffusion coefficientD̄ should be constant, inde-
pendent of the magnetic fieldfsee Eq.s16dg.

Figure 3 shows the normalized average diffusion coeffi-

cient D̄ /D0 as a function of the Langevin parameterh.
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Within 10%, the average diffusion coefficient remains con-

stant. Upon closer inspection, a slight increase ofD̄ with h is
observed. This increase can be explained by dipolar interac-

tions between the chainlike particles. In that case,D̄ is given
by Eq. s28d, wherec has to be evaluated with the effective
parameters of the chainlike particles.

Figure 4 shows the reduced diffusion coefficientssDi

−D0d /D0 and sD'−D0d /D0 as a function of the Langevin
parameterh. Figure 4 shows that the experimental data fol-
low nicely the predicted behaviorDi,'−D0~L2. Small cor-
rections to this behavior due to interactions of the clusters as
indicated by the results shown in Fig. 3 can be included via
Eqs. s26d and s27d using the effective parameters for the
cluster particles. Note that a similar agreement of the experi-
mental results to model predictions has been obtained inf6g
by adjusting an additional fit parameter.

VI. CONCLUSIONS

A unified approach to the anisotropic diffusion in liquid
crystals and in ferrofluids is proposed. Based on a mean-field
kinetic equation, explicit expressions for the diffusion coef-
ficients parallel and perpendicular to the director and mag-
netic field have been derived.

In the dilute limit, common expressions for the diffusion
coefficients are found for both, liquid crystals and ferroflu-
ids, showing the common origin of the phenomenon in both
liquids. In both kinds of fluids, the anisotropy of the particle
or cluster shape provides the basic mechanism for the aniso-
tropic diffusion. For higher concentrations, when the specific
interparticle interactions become important, different depen-
dences of the diffusion coefficients on the orientational order
parameters are found. This difference is directly related to
the difference of the excluded volume and dipolar interac-
tions, which dominate the dynamics in liquid crystals and in
ferrofluids, respectively.

The present results for liquid crystals are similar to the
predictions of the modified affine transformation modelf5g,
while the results for ferrofluids are similar to those of Bacri
f6g and Morozovf11g. Further comparisons with computer
simulations and experimental results show satisfactory
agreement. Except for elucidating the common origin of the
anisotropic diffusion in both kinds of fluids, the main benefit
of the present approach is that the same kinetic models that
are used to predict viscous properties and the orientational
dynamics can now also be used to predict diffusion proper-
ties. It would be very interesting to see whether the available
kinetic models can describe all the dynamical properties of
these fluids with the same set of material parameters.
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APPENDIX A: DERIVATION OF DIFFUSION
COEFFICIENTS FOR NEMATIC LIQUID CRYSTALS

In this appendix, the derivation of the anisotropic diffu-
sion coefficientss22d and s23d is outlined.

The contribution of the diffusion flowjU due to the mean-
field interaction potentialU is given by Eq.s10d. For nematic
liquid crystals, we consider potentials of the formU
=U1srduu : kuu

9
l, where the strength of the interaction de-

pends on the local concentration. We assume a spatially ho-
mogeneous uniaxial ordering, where the distribution function
is of the form given in Eq.s11d with Sjsrd=Sj.

The diffusion flowjU contains two moments that have to
be evaluated. First,k=Ul=skuul : kuu

9
ld=U1, where =U1

=s]U1/]rd=r. With Eq. s11d, the second moment is evalu-
ated to givekuul=S2nn+fs1−S2d /3g1. Therefore, one finds
k=Ul= 2

3S2
2=U1.

FIG. 3. The normalized average diffusion coefficientD̄ /D0 is
shown as a function of the Langevin parameterh. Data are taken
from Ref. f6g. The solid line is the prediction for noninteracting,
chainlike particles.

FIG. 4. The reduced diffusion coefficientssD'−D0d /D0

ssquaresd and sDi−D0d /D0 scirclesd as a function of the order pa-
rameterS2 defined in the text. Data are taken from Ref.f6g. The
dashed lines correspond to the fit presented in Ref.f6g, while the
solid lines are the result of a linear relation proposed in this work,
assuming noninteracting, chainlike particles.
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In order to evaluate also the termkuu ·=Ul, the fourth
moment is needed,

kuaubugudl = S4nanbngnd +
S2 − S4

7
nsadnbdsgdd + C4dsabddsgdd,

sA1d

whereC4=s7−10S2+3S4d /105 andAsabgdd denotes the sum
over the symmetrization of the expressionf24g. With the help
of Eq. sA1d, the termkuu ·=Ul can be evaluated to give

kuu·=Ul = sŨ1/rdS's1 − nnd·=r + sŨ1/rdSinn·=r

sA2d

where Ũ1 and Si,' are defined after Eq.s22d. With these
results, the diffusion flowj = j0+ jU can be expressed asj =
−D's1−nnd ·r+Dinn ·=r, where the diffusion coefficients
D', Di are given by Eqs.s22d and s23d.

APPENDIX B: DERIVATION OF DIFFUSION
COEFFICIENTS FOR FERROFLUIDS

Here, we briefly outline the derivation of the anisotropic
diffusion coefficientss27d and s26d.

The diffusion flow jS is given by Eq.s9d. In the local
equilibrium approximation, the second momentkuaubl is
given by

kuaubl = L2sjedĤaĤb +
1 − L2sjed

3
dab, sB1d

where je is the local effective field. Using Eq.sB1d, the
diffusion flow jS is given by

jS= − sDi
0 − D'

0 dr
]je

]r
SL28ĤĤ ·=r −

1

3
L28 = rD sB2d

whereL28;dL2sjed /dje denotes the total derivative. For the
ease of notation, the argumentje of the functionsLj is sup-
pressed here. From Eq.sB2d, the diffusion flow jS can be

written in the formjS=−D'
S s1−ĤĤd ·=r−Di

S=r, where the
diffusion coefficients can be read off,

D'
S = −

1

3
sDi

0 − D'
0 dr

]je

]r
L28, sB3d

Di
S=

2

3
sDi

0 − D'
0 dr

]je

]r
L28. sB4d

Next, we consider the potential contribution of the diffu-
sion flow jU, defined in Eq.s10d. Within the local equilibrium
approximation, the interaction potential is given byU=

−jeu ·Ĥ. The gradient of the potential is therefore given by

=U=−su ·Ĥd]je/]r=r. For the diffusion flowjU, the mo-
mentsk=Ul andkuu ·=Ul have to be evaluated. In the local
equilibrium approximation one findsk=Ul=−L1s]je/]rd=r.
With the help of the third moment

kuaubugl = L3ĤaĤbĤg +
L1 − L3

5
sĤadbg + Ĥbdag + Ĥgdabd,

sB5d

whereL3sjed=L1sjed−5L2sjed /je; also, the moment

kuaub=bUl = − kuaubuglĤg

]je

]r
=br sB6d

can be evaluated. Inserting these relations into the diffusion

flow jU, Eq. s10d, it becomesjU=−D'
Us1−ĤĤd ·=r−Di

U=r,
where

D'
U = − r

]je

]r
FD'

0 L1 + sDi
0 − D'

0 d
L1 − L3

5
G , sB7d

Di
U = − r

]je

]r
FD'

0 L1 + sDi
0 − D'

0 d
3L1 + 2L3

5
G . sB8d

Summing the different contributions to the total diffusion
flow j, Eq. s7d, the total diffusion coefficientss27d and s26d
are obtained from Eqs.s17d, s18d, sB3d, sB4d, sB7d, andsB8d.
The resulting expression has been simplified by use of the
mathematical identity L28sxd−f2L1sxd+3L3sxdg /5=
−L1sxdL2sxd.
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